OBJECTIVES

-Create a robot to:

- -Use an infrared sensor to detect infrared light
- -Use a proximity sensor to measure distance from drop off (12 inches)
- -Mechanism to drop of marker once robot is stopped
- -Control robot using joystick and LabView Software

EXISTING SEARCH AND RESCUE ROBOTS

- -Serpentine
 - -By CMU Robotics Institute
 - -Snake like motion, easy to get through narrow spaces
- -Amoeba like SRR
 - -Movement by contracting and expanding actuator rings
 - -Toroidal shape, entire contact surfaces for traction

ALTERNATIVE DESIGN MATRIX

Urban Search and Rescue Project Alternative Design Matrix									
		All Combinations of Design Parameters comprising Conceptual Designs							
		Ramp		Conveyor belt		Arm & Funnel		<u>Pulley</u>	
		Inclined		Belt with		Arm &		Block-and-	
Lowering Mechanism		Plane		incline plane		Funnel		tackle	
Able to be powered by motor		Yes		Yes		Yes		Difficult	
Drop Cube within range		Difficult		Difficult	,	Yes		Yes	
Acceptance Criteria (as many as team likes)	Weight (by %) of Acceptan ce Criteria (apply last)	Scoring of the importance of each Conceptual Design in meeting Acceptance Criteria (Max 10)	Weight ed Score	Scoring of the importance of each Conceptual Design in meeting Acceptance Criteria (Max 10)	ed Score	Scoring of the importance of each Conceptual Design in meeting Acceptance Criteria (Max 10)	Weighte d Score	Scoring of the importance of each Conceptual Design in meeting Acceptance Criteria (Max 10)	Weighte d Score
Aesthetics	15%	7	1.05	9	1.35	8	1.20	8	1.20
Accuracy	25%	7	1.75	7	1.75	9	2.25	7	1.75
Efficiency	25%	8	2.00	8	2.00	9	2.25	6	1.50
Weight(Light)	15%	7	1.05	7	1.05	8	1.20	8	1.20
Complexity	20%	6	1.20	9	1.80	9	1.80	8	1.60
				=		=		=	
Total Percentage =	100%		7.05		7.95		8.70		7.25

BODY/MECHANICAL

MATERIAL OF CHOICE

- -Plastic -Moldable
 - -Sturdy
 - -Aesthetics

BASE

- -Serves as platform upon which drop-off mechanism is mounted
- -Connected via screws to supports
- -Dimensions: 3" by 4.5"

SUPPORTS

- -Hold up the base
- -2 supports
- -Dimensions: 2" by 2"

CUBEHOLDER

- -Designed to encompass the cube
- -Dimensions: Each side is 1.2"
- -Holds cube firmly but leaves space for dropping it

CubeHolder with cube

ARM

- -Connected to motor via shaft
- -Dimensions: 3" long by 1" wide
- -"Rests" upon ledge

Arm with CubeHolder attached

FUNNEL

- -Connected to base via screw
- -Dimensions: 2" wide by 4" long
- -Positioned just 1/2" above ground to prevent cube from bouncing

ELECTRICAL ENGINEERING

- -PIC Board
- -Uses Arduino UNO
- -9v battery
- -3 motors

SENSORS

- -Infrared Sensor
 - -Sense its surroundings by either emitting or detecting infrared radiation
 - -Heat of an object or detecting motion
 - -Not visible to human eye

- -Emits electromagnetic field or a beam of radiation
- -Monitors changes in the field
- -No physical contact

THIRD MOTOR CIRCUIT

- -Arduino doesn't blow up
- -Components:
 - -1N4001 diode
 - -10k ohm resistor
 - -TIP121 NPN Transistor
 - -Motor

JOYSTICK CALIBRATIONS

- -Logitech extreme 3D pro Joystick
- -X,Y,Z, Z rotational axis
 - -X,Y,Z rotational axis max = 33,000
 - -X,Y,Z rotational axis min = -33,000
- -Sample block diagram for calibration and initialization

JOYSTICK CALIBRATION BLOCK DIAGRAM

SOFTWARE

-National Instruments LabView 2011
-Highly productive development environment for creating custom applications that interact with real-world data or signals in fields such as science and engineering

-SubVI's Subroutines by modularity

BLOCK DIAGRAM(MOVEMENT)

BLOCK DIAGRAM (SENSORS)

BLOCK DIAGRAM(PACKAGE RELEASE)

FRONT PANEL (OUTPUT)

APPLICATIONS IN SPACE

- -Dropping off marker for future explorers
- -Dropping off package of aid for people

WORKS CITED

http://www.ni.com/newsletter/51141/en/

http://www.technologyreview.com/news/407603/amoebalike-robots-forsearch-and-rescue/

https://www.ri.cmu.edu/research_project_detail.html? project_id=407&menu_id=261

http://digital.ni.com/public.nsf/allkb/CA411647F224787B86256DD000669EFE

http://www.adafruit.com/datasheets/TIP120.pdf

http://zone.ni.com/reference/en-XX/help/371361J-01/glang/case_structure/

